

EFFECT OF PAST AND CONCURRENT BLOOD PRESSURE OVER 120/70 ON WHITE MATTER HYPERINTENSITIES: AN ANALYSIS OF THE UK BIOBANK COHORT.

Dr Karolina Wartołowska Prof Alastair Webb

Wolfson Centre for Prevention of Stroke and Dementia, University of Oxford, UK

WSO-ESO Conference 7th November 2020

Background

 White matter hyperintensities (WMHs) are associated with increased risk of stroke and dementia.

 They are strongly linked with age, hypertension, and cerebrovascular dysfunction.

 The temporal relationships between these factors and WMHs are poorly understood.

Aims

The aim of this study was to determine the associations between WMHs and concurrent and past systolic (SBP) and diastolic (DBP) blood pressure; in particular, to investigate whether:

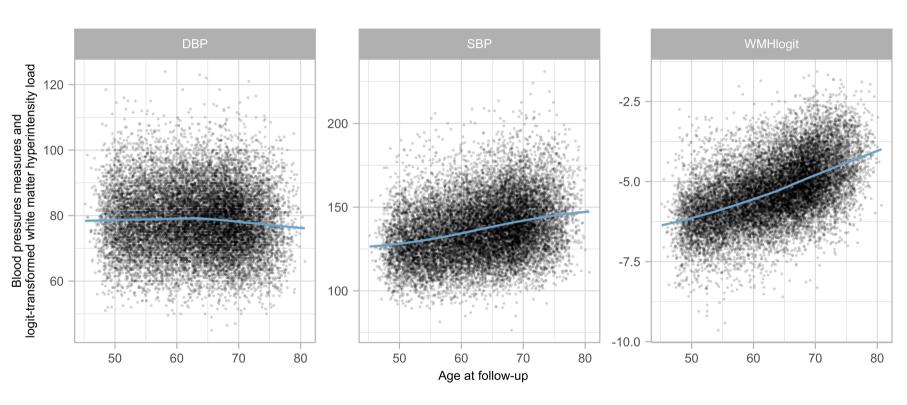
- current SBP or DBP has a stronger association with WMHs
- past SBP or DBP has a stronger association with WMHs
- associations between SBP, DBP and WMHs vary across different ages

Methods

- UK Biobank is a prospective community-based cohort of >500,000, 40-69 year-old community-based people.
- 20,200 of whom had an MRI scan 4-12 years after baseline.
- WMHs were automatically segmented based on T1-weighted and T2-weighted FLAIR images using FSL tools (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

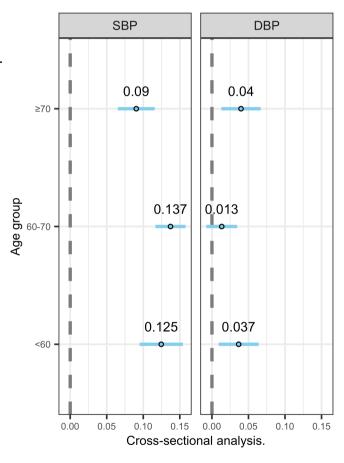
Methods

- WMH load was calculated by logit-transformed the volume of WMHs normalised by the total white matter volume.
- Associations between concurrent and past SBP and DBP values and were analysed using linear models adjusted for age, sex and cardiovascular risk factors (smoking and diabetes), ASI, antihypertensive medication, source of BP measure, assessment centre, and longitudinally, for time since baseline.
- Analyses were repeated after stratifying by age and BP values, and for hypertensive status.



Results

SBP and logit-WMH load increase with age

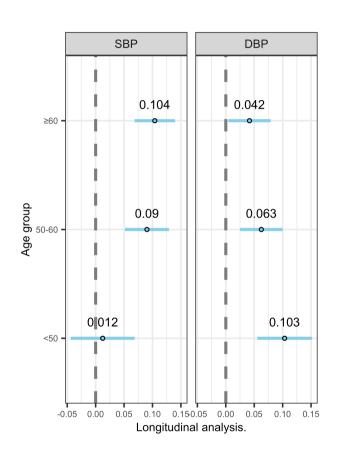


Results: cross-sectional

	Age- and sex-			
	Unadjusted	adjusted	Fully-adjusted	
Variable	(95%Cls)	(95%Cls)	(95%Cls)	
SBP	0.273 (0.262 to	0.126 (0.116 to	0.076 (0.062 to	
	0.284)	0.136)	0.090)	
DBP	0.083 (0.071 to	0.117 (0.107 to	0.064 (0.050 to	
	0.094)	0.127)	0.078)	

WMH increase per 10	WMH increase per
mmHg concurrent	5 mmHg

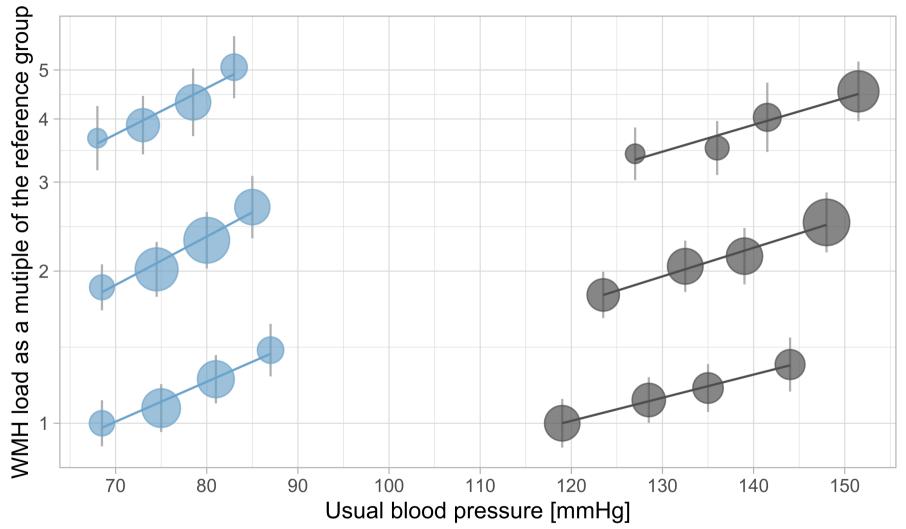
Age group	SBP	concurrent DBP
< 60	1.069	1.017
60 - 69	1.076	1.0063
> 70	1.049	1.019



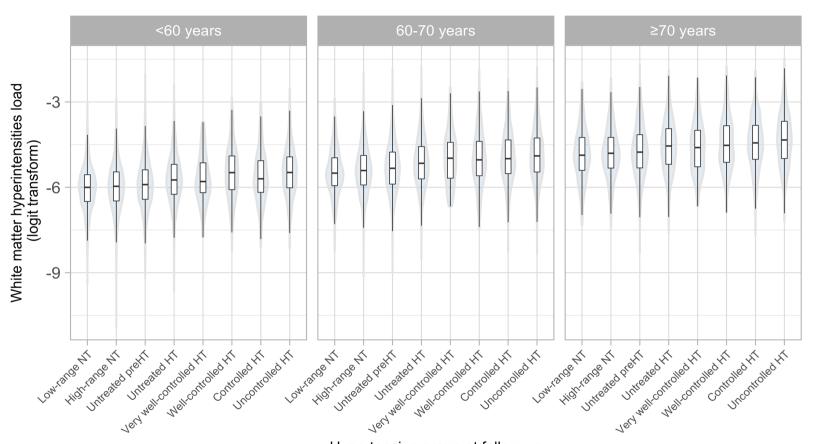
Results: longitudinal

		Age- and	Fully-	
	Unadjusted	sex-adjusted	adjusted	
Variable	(95%Cls)	(95%Cls)	(95%Cls)	
SBP	0.257 (0.240	0.115 (0.100	0.045 (0.022	
	to 0.274)	to 0.131)	to 0.069)	
DBP	0.150 (0.133	0.120 (0.105	0.087 (0.064	
	to 0.167)	to 0.136)	to 0.109)	

	WMH increase per 10 mmHg	WMH increase per 5 mmHg concurrent
Age group	concurrent SBP	DBP
< 50	1.007	1.054
50 - 60	1.052	1.032
≥ 60	1.061	1.021



Results: usual BP

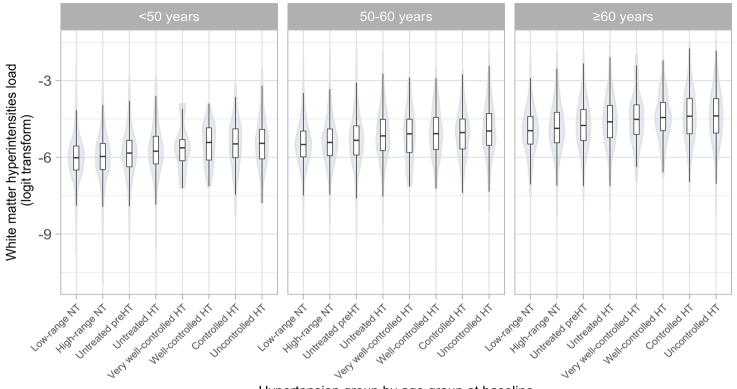




Results

Results

		Increase in WMH load (95%		
Group at follow-up	BP [mmHg]	AntiHT	CIs)	N
High NT	SBP: 120-130 or DBP: 70-80	No	1.079 (1.032 to 1.127)	5463
Untreated pre-HT	SBP: 130-140 or DBP: 80-90	No	1.180 (1.130 to 1.232)	6053
Untreated HT	SBP ≥ 140 or DBP ≥ 90	No	1.398 (1.341 to 1.457)	9226
Very well-controlled HT	SBP < 120 or DBP: < 70	Yes	1.545 (1.374 to 1.738)	285
Well-controlled HT	SBP 120-130 or DBP 70-80	Yes	1.603 (1.495 to 1.719)	949
Controlled HT	SBP: 130-140 or 80-90	Yes	1.604 (1.516 to 1.697)	1879
Uncontrolled HT	≥ 140 or DBP ≥ 90	Yes	1.774 (1.693 to 1.858)	5156



Hypertension group by age group at baseline

Increase in WMH load (95%

Group at baseline	BP [mmHg]	AntiHT	CIs)	N
High NT	SBP: 120-130 or DBP: 70-80	No	1.089 (1.018 to 1.166)	7384
Untreated pre-HT	SBP: 130-140 or DBP: 80-90	No	1.213 (1.135 to 1.298)	8133
Untreated HT	SBP ≥ 140 or DBP ≥ 90	No	1.415 (1.323 to 1.513)	9780
Very well-controlled HT	SBP < 120 or DBP: < 70	Yes	1.417 (1.078 to 1.863)	122
Well-controlled HT	SBP 120-130 or DBP 70-80	Yes	1.720 (1.496 to 1.978)	491
Controlled HT	SBP: 130-140 or 80-90	Yes	1.782 (1.606 to 1.976)	1185
Uncontrolled HT	≥ 140 or DBP ≥ 90	Yes	1.791 (1.654 to 1.941)	2959

Conclusions

- Elevated DBP in midlife is associated with more extensive brain damage years later.
- WMHs were strongly associated with elevated SBP and DBP, even if BP was below the pre-hypertensive range.
- Concurrent SBP was more strongly associated with WMHs, across all ages,
- Past past DBP more strongly predicted future WMHs than past SBP, particularly in mid-life (people in their 40s).
- Long-term prevention of WMH may require intensive control of even mildlyelevated mid-life BP.

Acknowledgements

